Electric Vehicle Power Converters

Sam Emrie Jacob Anderson Advisor: Dr. W. Na

Outline

Project Summary Project Goals Background Detailed Description Functional Description and Requirements Equipment and Parts List Preliminary Lab Work Schedule of Spring Tasks

Project Summary

Project Goals

Being able to charge the battery throughout the wall power outlet, 120 Vrms, 60Hz.

- Having the DC able to charge a battery by making the signal approximately 52V.
- Analyzing charging and discharging voltage current characteristics of 400W, 52 V Li-Ion battery.
- Developing a more safe and efficient charging and discharging control algorithm of the battery

Background

Previous work done by Matt Daly, Peter Burrmann, and Renee Kohl
Completed Small Scale System
Simulated and Designed Large Scale System
Found Internal Resistance of Battery

Detailed Description

Power Factor Correction Circuit
Bidirectional Converter Circuit
Gate Driver Circuit
DSP Protection Circuit
Battery Testing Circuit
Digital Signal Processor

Power Factor Correction

Figure 2: Power Factor Correction Output

Power Factor Correction

Figure 3: Diagram of Power Factor Correction Circuit

Bidirectional Converter

Figure 4: Diagram of Bidirectional Circuit

Gate Driver Circuit (IR2110)

DSP A/D Sensing Circuit

Circuit

Battery Testing

National Renewable Energy Laboratory Saft-Battery Model

Battery Test Circuit in Simulink

Figure 8: Diagram of the Battery Test Circuit in Simulink

Simulation Result

DSP

- Using TMS320F2812 DSP board to control the PWM duty cycle
- Switching frequency between 10-50kHz
- Sensing frequency between 10-50kHz
- A/D inputs 0-3V
- PWM output 0-3V

Digital Signal Processor

TMS320F2812 DSP ■ 32-Bit CPU ■ 150 MHz Board ■ 16 Channel ADC = 3V input ■ 16 PWM Channels Programmable via Simulink and Code Composer

MOSFET and Heat Sink

IRFP460A N-Type
V_DS = 500V
I_D = 20A
Low Voltage High Freq.
55ns Rise Time
SK 145 Heat Sink
Thermal Resistance 13.2K/W

MOSFET Gate Driver

HCPL-3180-060E

2.5 A maximum peak output current

Power Supply VCC-VEE 10Vmin 20Vmax
250 kHz maximum switching speed PWM input

Diode Rectifier

NTE5328 – Bridge Rectifier
Maximum RMS Bridge Input Voltage = 700V
Surge Overload Rating: 400A (Peak)
Average Forward Current (TC = +75°C), IF (AV) = 25A

Figure 12: Picture of Diode Rectifier (NTE5328)

Diode

VS-HFA50PA60CPBF
VR = 600 V
Maximum continuous forward current 25A per leg 50A per device

Figure 13 and Figure 14: Picture of Diode and Diode Circuit

Current Transducer

L08P050D15 Current Transducer ■ Power Supply VCC ±15V±5% Nominal Primary DC current $I_f = 50AT \text{ (wrapping)}$ ■ Maximum Current I_fmax = ± 150 AT Output Voltage V_OUT = $4V \pm 0.040V$ (a) $\pm I$ f Uses hall effect via cable winded through opening to sense current

Op-Amp

OP484FPZ Op-Amp
Supply Voltage Range VS = 3V - 36V
Output Voltage High = 2.8Vmin
Output Voltage Low = 125mVmax
Overvoltage protection

Hex Inverter

NXP - 74HC04N
Inverts input
VCC supply voltage = 5.0V

Noo-
384
]ev
]sa
]sy
]-*
]++

Capacitors and Inductors

Aluminum Electrolytic Capacitor
Capacitance = 1500UF
Voltage = 400V
Inductance = 500UH,
Current = 35A

Voltage Regulators

LD1117V33C
Vin = 15V
Vo = 3.3V
LM1117T-5.0/NOPB
Vin = 15V
Vo = 5V

Figure 18 and Figure 19: Picture of Voltage Regulator

Future Work

Small Scale Test Battery
Large Scale Test Battery
PCB Design
DSP Design

Spring Schedule

Week 1 Any Extra Battery Research
Weeks 2-3 Small Scale Battery Testing
Weeks 4-6 PCB Design
Weeks 7-9 DSP Design
Weeks 10-11 Large Scale Battery Testing
Week 12 Implementation

References

- Daly, Matt, Renee Kohl, and Peter Burrmann.
 "Electric Vehicle Charger for Plug-In Hybrid Electric Vehicles." *PHEV: Plug in Hybrid Electric Vehicle Charger.* 26 Sept. 2011. Web. 24 Sept. 2012.
- N. Mohan, *First Course on Power Electronics*. Minneapolis: MNPERE, 2009.

Questions?

